Immunoassays for Natriuretic Peptides, Product Flyer

Interest in any of the products, request or order them at Bio-Connect Diagnostics.
NATRIURETIC PEPTIDES - AREAS OF INTEREST

Clinical
- Cardiac impairment, acute myocardial infarction (left ventricular dysfunction)
- Risk stratification in heart failure patients with normal natriuretic peptide levels
- Renal failure
- Obesity and diabetes
- Various forms of secondary hypertension
- Therapy monitoring

PreClinical
- proANP (1-98) is an excellent candidate as a biomarker of cardiac hypertrophy in preclinical toxicology investigations; detection of drug-induced cardiac hypertrophy in rodents

ANP and BNP exert diuretic, natriuretic, and vasodilatory effects and thus contribute to the regulation of cardiovascular and body-fluid homeostasis and blood pressure control. These effects result from interference with the renin-angiotensin-system, endothelins, and sympathetic nervous system.

ANP appears to be a cardiovascular risk factor, particularly in the context of hypertension, stroke, obesity, and metabolic syndrome. ANP is a marker of cardiac dysfunction, in particular left ventricular dysfunction, and is a useful marker of future outcomes in patients with acute coronary syndromes and congestive heart failure.

ANP and BNP exert diuretic, natriuretic, and vasodilatory effects and thus contribute to the regulation of cardiovascular and body-fluid homeostasis and blood pressure control. These effects result from interference with the renin-angiotensin-system, endothelins, and sympathetic nervous system.

ANP appears to be a cardiovascular risk factor, particularly in the context of hypertension, stroke, obesity, and metabolic syndrome. ANP is a marker of cardiac dysfunction, in particular left ventricular dysfunction, and is a useful marker of future outcomes in patients with acute coronary syndromes and congestive heart failure.

proANP (1-98) Literature
An Initial Characterization of N-Terminal-Pro-Brain Natriuretic Peptide in Vascular and Sympathetic Pathophysiology.

Comparison of Pro-Atrial Natriuretic Peptide and Brain Natriuretic Peptide Levels in Acute Myocardial Infarction Patients.
D'Alonzo G et al, J Am Heart Assoc 2015; 4: e001609

Transcoronary Transplantation of Functionally Competent BMCs Is Associated With a Decrease in Natriuretic Peptide Levels and Survival of Patients With Chronic Heart Failure: Results of the TOPCARE-CAD Registry.
Aravena A et al, Circ Res 2007; 100: 1234-1241

Intravenous plasma levels of NT-proANP and BNP differentiate cardiac dysfunction in elderly patients. Kiparsky IG et al, Clin Lab 2005; 51(7-8): 372-379


Prognostic value of left atrial expansion index and exercise-induced change in atrial natriuretic peptide as long-term predictors of atrial fibrillation recurrence. Govindan et al, Europace 2012; 14: 1102-1110

BNP Fragment Literature
Thirty years of the heart as an endocrine organ: physiological role and clinical utility of cardiac natriuretic hormones.

Comparison of Plasma Fluid N-Terminal Pro-Brain Natriuretic Peptide and Brain Natriuretic Peptide Levels in Acute Myocardial Infarction Patients: A Randomized Controlled Trial.
(Long AC et al, Chest 2010; 137: 1369-1374

N Terminal Pro-B-Type Natriuretic Peptide as an Indicator of Risk of Restitution in Patients With Chronic Heart Failure.
Hermann-Arnhof K et al, Clinical Chemistry 2005; 51:138-143

Moro C and Smith RH, Diabetes 2009; 58: 2726-2728


ANP and BNP exert diuretic, natriuretic, and vasodilatory effects and thus contribute to the regulation of cardiovascular and body-fluid homeostasis and blood pressure control. These effects result from interference with the renin-angiotensin-system, endothelins, and sympathetic nervous system.

ANP appears to be a cardiovascular risk factor, particularly in the context of hypertension, stroke, obesity, and metabolic syndrome. ANP is a marker of cardiac dysfunction, in particular left ventricular dysfunction, and is a useful marker of future outcomes in patients with acute coronary syndromes and congestive heart failure.

ANP and BNP exert diuretic, natriuretic, and vasodilatory effects and thus contribute to the regulation of cardiovascular and body-fluid homeostasis and blood pressure control. These effects result from interference with the renin-angiotensin-system, endothelins, and sympathetic nervous system.
proANP (1-98) ELISA BI-20892

Why measure prohormones?
BNP Fragment and proANP (1-98) are stable molecules and circulate in high concentrations.

Why measure with Biomedica Immunoassays?
- Low sample volume – no extraction, direct measurement
- Validated in preclinical and clinical studies
- Human serum based calibrators
- Clear separation – healthy controls/elevated levels
- Reproducible and reliable results
- Robust assays – automated protocols
- Cost effective
- Manufactured in accordance with GMP/GLP guidelines
- Flexible solutions for your projects

proANP (1-98) ELISA
Enzyme Immunoassay for the quantitative determination of human and rodent proANP (1-98)
Cat.No.: BI-20892 | 12 x 8 tests
conventional 96well ELISA format

proANP (1-98) ELISA (BI-20892)
Assay characteristics
Reference data
Median = 1.45 nmol/l (n=53). Each laboratory should establish own reference values.
Sample volume
0-10 nmol/l (5 standards and 1 control in human serum matrix, lyophilized)
Detection limit
(5 nmol/l [5 SD]: 0.050 nmol/l)
Incubation time
3 h / 30 min

Assay principle
1. PRECOATED AB
2. CAL / SAMPLE / CTRL
3. CONJ
4. SUB
5. STOP
6. SUB / ENZYME CATALYZED COLOUR CHANGE

Typical standard curve of the Biomedica ELISA for proANP (1-98)

BPN Fragment EIA
Enzyme Immunoassay for the quantitative determination of human BNP Fragment (8-29)
Cat.No.: BI-20852W | 12 x 8 tests
conventional 96well ELISA format

BPN Fragment EIA (BI-20852W)
Assay characteristics
Reference data
Median = 340 pmol/l (n=76). Each laboratory should establish own reference values.
Standard range
0 to 6,400 pmol/l (7 standards and 1 control in human serum matrix, lyophilized)
Detection limit
(171 pmol/l at 95% B/B0)
Incubation time
overnight / 20 min

Assay principle
1. PRECOATED AB
2A. CAL / SAMPLE / CTRL
2B. CONJ
3. SUB
4. STOP
5. SUB / ENZYME CATALYZED COLOUR CHANGE

Typical standard curve of the Biomedica competitive EIA for BNP Fragment