Organ-Specific Autoimmunity, Brochure

Interest in any of the products, request or order them at Bio-Connect Diagnostics.
Organ-Specific Autoimmunity

- Thyroid Disease
- Diabetes Mellitus
- Addison’s Disease
- Myasthenia Gravis
Autoimmune Thyroid Diseases (ATD)

Autoantibodies in ATD are directed to the thyroid specific proteins which are Thyroglobuline (Tg), Thyroid peroxidase (TPO) and Thyroid Stimulating Hormone Receptor (TSH-R).

Autoimmune responses to these antigens vary in different forms of ATD:

- In Graves’ disease, autoantibodies are directed mainly to TSH-R.

- Hashimoto’s thyroiditis is characterised by autoantibodies directed to Tg and TPO and in some cases to TSH-R.

- Postpartum thyroid dysfunction is an organ specific autoimmune disorder associated with Tg and TPO autoantibodies.

Patients with autoimmune thyroid diseases are at heightened risk of developing a second autoimmune problem: Addison’s disease, type 1 diabetes, pernicious anaemia, myasthenia gravis.
Clinical interest
- Differential diagnosis of Grave’s disease
- Prediction of the outcome of Grave’s disease after treatment
- Prediction of foetal / neonatal hyperthyroidism
- Risk factor for Grave’s orbitopathy

Principle of the assay
Radioreceptor assay in coated tube
- TSH-R antibodies in patient sera interact with TSH receptors coated onto tubes
- Bound TSH-R antibodies inhibit the binding of labelled TSH to the receptors
- Results are expressed in U/L (NIBSC 90/672) or in inhibition of TSH binding index

Characteristics
- Standard range: 0-40 U/L
- Detection limit: 0.3 U/L
- Functional sensitivity: 0.8 U/L
- Sample: serum
- Shelf life: 6 weeks

Expected values

<table>
<thead>
<tr>
<th>U/L</th>
<th>≤ 1</th>
<th>1.1 - 1.5</th>
<th>> 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH-R-Ab</td>
<td>Negative</td>
<td>Grey zone</td>
<td>Positive</td>
</tr>
</tbody>
</table>

ASSAY PROCEDURE

Incubate 2h at RT under shaking

Count

Wash

100 µL \(^{125}\text{TSH}\)

Incubate 1h at RT under shaking

50 µL start buffer + 100 µL standard, control, sample
TPO-AB-CT

THYROID PEROXIDASE AUTOANTIBODIES

Clinical interest
• Prediction of postpartum thyroiditis in at risk women
• Diagnosis, follow-up, prognosis of thyroiditis in Hashimoto’s thyroiditis
• In subclinical hypothyroidism, risk factor of developing overt thyroid disease

Principle of the assay
Competition assay in coated tube
• Competition between TPO-Ab in samples and monoclonal TPO-Ab on the coated tube for a limited quantity of ¹²⁵I labelled TPO antigen
• Results are expressed in U/ml

Characteristics
• Standard range: 0-10000 U/mL
• Detection limit: 8 U/mL
• Sample: serum, plasma
• Shelf life: 10 weeks

Expected values

<table>
<thead>
<tr>
<th>U/mL</th>
<th>< 70</th>
<th>70 - 130</th>
<th>> 130</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPO-Ab</td>
<td>Negative</td>
<td>Grey zone</td>
<td>Positive</td>
</tr>
</tbody>
</table>

ASSAY PROCEDURE

Incubate 1h at RT under shaking

Wash

50 µL standard + prediluted control and sample (predilution 1/21) + 100 µL ¹²⁵I-TPO

Count
TGAB I STEP

Clinical interest
- Differentiated thyroid carcinoma follow-up

Principle of the assay
- **Competition assay in coated tube**
 - Competition between Tg-Ab in samples and monoclonal Tg-Ab on the coated tube for a limited quantity of 125I labelled Tg antigen
 - Results are expressed in IU/mL

Characteristics
- Standard range: 0-2000 IU/mL
- Detection limit: 6 IU/mL
- Functional sensitivity: 15 IU/mL
- Sample: serum
- Shelf life: 6 weeks

Expected values

<table>
<thead>
<tr>
<th>IU/mL</th>
<th>< 30</th>
<th>30 - 70</th>
<th>> 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tg-Ab</td>
<td>Negative</td>
<td>Grey zone</td>
<td>Positive</td>
</tr>
</tbody>
</table>

ASSAY PROCEDURE

1. Incubate 1h30 at RT under shaking
2. Count
3. Wash
4. 20 µL standard, control or sample + 200 µL 125I-Tg
Type 1 diabetes mellitus (T1DM) is the consequence of the destruction of β cells of the Langerhans islets, eventually leading to absolute insulin deficiency in most cases.

The majority of the islets undergoes a destructive process controlled by an immune mediation.

Interaction between genetic and environmental factors induces secretion of diabetes autoantibodies:
- Glutamic Acid Decarboxylase Autoantibodies: GAD-AB
- Tyrosine Phosphatase Autoantibodies: IA2-AB
- Insulin Autoantibodies: IAA

These antibodies can be used as:
- diagnostic markers to help to define the aetiology and to classify the disease origin (immune or not)
- monitoring markers
- prognosis factor.

They are potentially valuable to predict the disease through population screening:

“We conclude that the presence of two or more autoantibodies (out of IAA, GAA and ICA512bdcAAs) is highly predictive of the development of type 1 diabetes among relatives” [1]

(1) “Prediction of Type 1 Diabetes in First-Degree Relatives Using a Combination of Insulin, GAD and ICA512bdc/IA-2 Autoantibodies”. Diabetes, 1996, 45 : 926-933

[Image: A graph showing the percent diabetes-free rate over follow-up years for relatives with different numbers of autoantibodies.]
GAD-AB

GLUTAMIC ACID DECARBOXYLASE AUTOANTIBODIES

Clinical interest
- Prediction and prevention of type 1 diabetes
- Severity of the clinical state
- Classification of autoimmune diabetes
- Screening of population: identification of high-risk individuals
- Identification of the latent autoimmune diabetes in adults
- Type 2 diabetes associated with neuropathy
- In the 2005 DASP study, the GAD-AB kit showed 95% specificity and 84% sensitivity

Principle of the assay

Radioimmunoassay
- GAD autoantibodies in sera interact with iodine labelled recombinant GAD
- A solid phase protein A is added to precipitate the complexes previously formed
- Results are expressed in U/mL (1 U/mL is equivalent to 25 U/mL of NIBSC 97/550)

Characteristics
- Standard range: 0-300 U/mL
- Detection limit: 0.11 U/mL
- Sample: serum, EDTA plasma
- Shelf life: 6 weeks

Expected values

<table>
<thead>
<tr>
<th>U/mL</th>
<th>≤ 1</th>
<th>> 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAD-Ab</td>
<td>Negative</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Assay Procedure

1. Incubate 2h at RT
2. 20 µL standard, control, sample + 50 µL 125I-GAD
3. 1000 µL buffer
4. Incubate 1h at RT
5. Centrifuge
6. Decant
7. Count
Clinical interest

- Prediction of the progression to clinical symptoms
- Severity of the clinical state
- Screening of population: identification of high-risk individuals
- In the 2005 DASP study, the IA2-AB kit showed 100% specificity and 70% sensitivity

Principle of the assay

Radioimmunoassay

- IA2 autoantibodies in sera interact with iodine labelled recombinant IA2
- A solid phase protein A is added to precipitate the complexes previously formed
- Results are expressed in U/mL
 (1 U/mL is equivalent to 125 U/mL of NIBSC 97/550)

Characteristics

- Standard range: 0-50 U/mL
- Detection limit: 0.19 U/mL
- Sample: serum, EDTA plasma
- Shelf life: 6 weeks

Expected values

<table>
<thead>
<tr>
<th>U/mL</th>
<th>≤ 1</th>
<th>> 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA2-Ab</td>
<td>Negative</td>
<td>Positive</td>
</tr>
</tbody>
</table>

ASSAY PROCEDURE

1. Incubate 1 night at 2-8°C
2. Centrifuge
3. Decant
4. Count
5. 20 µL standard, control, sample + 50 µL 125I-IA2
6. 50 µL protein A
7. 1000 µL buffer
8. Incubate 1h at 2-8°C

Clinical interest

- Early sign of an ongoing autoimmune process
- Discriminant analysis between insulin autoantibodies and insulin autoantibodies induced by the therapy

Principle of the assay

Semi quantitative assay

- **Total anti insulin antibodies (total AIA):**
 - Dissociation of the immune complexes, insulin adsorption by charcoal then radioimmuno-precipitation

- **Free anti insulin antibodies (free AIA):**
 - Radioimmunoprecipitation: IAA in sera interact with 125I labelled insulin
 - PEG is added to precipitate the complexes previously formed
 - Results are expressed in binding percentage

Expected values

- Normal values < 5.5 % B/T

ASSAY PROCEDURE (TOTAL AIA)

- Incubate 2 h at 18°-25°C
- Incubate 10 min at 18°-25°C
- Centrifugate
- Aspirate
- Count

1000 µL precipitating solution
100 µL control, supernatant + 100 µL tracer

ASSAY PROCEDURE (FREE AIA)

- Incubate 2 h at 18°-25°C
- Incubate 10 min at 18°-25°C
- Centrifugate
- Aspirate
- Count

1000 µL precipitating solution
50 µL control, sample + 100 µL tracer
Addison’s Disease
(or autoimmune adrenal disease)

Autoimmune destruction of the adrenal cortex is the most common cause of Addison’s disease.

Steroid 21-hydroxylase (21-OH) is a major adrenal autoantigen and 21-OH autoantibodies are important markers of autoimmune adrenal disease. This is the case whether the disease presents as isolated Addison’s disease or as part of the autoimmune polyglandular syndromes (APS) type I or type II.
Clinical interest

- Assessment of adrenal autoimmunity
- Prediction of adrenal insufficiency
 (identification of the subjects at high risk)
- Early detection of adrenal insufficiency
- Aid in therapy (early replacement therapy)

Principle of the assay

Radioimmunoassay

- 21-OH antibodies in patient sera, calibrators and controls interact with highly purified recombinant 125I 21-OH
- After an overnight incubation, solid phase protein A is added to precipitate the complexes previously formed
- Results are expressed in U/mL

Characteristics

- Standard range: 0-5000 U/mL
- Detection limit: 0.16 U/mL
- Sample: Serum
- Shelf-life: 6 weeks

Expected values

<table>
<thead>
<tr>
<th>U/mL</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-OH Ab</td>
<td>≥ 1.0 U/mL</td>
</tr>
</tbody>
</table>

ASSAY PROCEDURE

- Incubate 1 night at 2-8°C
- Incubate 1h at 2-8°C
- Centrifuge
- Count
- Decant

20 µL standard, control, sample + 50 µL 125I 21-OH
50 µL protein A
1000 µL buffer
Myasthenia Gravis (M.G.)

Myasthenia Gravis (M.G.) is a disorder of neuromuscular transmission with muscle weakness and fatigue on exertion. It results from a blockade of the neuromuscular junction that is caused by antibodies directed against the nicotinic acetylcholine receptor. The acetylcholine receptor has been cloned and its structure determined. It is formed by five subunits ($2\alpha, \beta, \gamma, \delta$). Binding of acetylcholine causes opening of the cation channel which allows Na^+ to enter the molecule. All subunits are required for a fully functional receptor.

In M.G., the function of the nerve-muscle synapse is affected by the autoimmune process. It is postulated that the major mechanism responsible for the dysfunction is related to the increase of the receptor internalisation and degradation rather than to direct blocking of binding sites.

Adult and foetal forms of the acetylcholine receptor differ by one of their subunit (the γ subunit in foetal receptor is replaced by the ε subunit in adult receptor). In some sera, AchR-Ab recognise the foetal form preferentially whereas in other sera, AchR-Ab recognise the adult form preferentially.
ACHR-AB

ACETYLCHOLINE RECEPTOR AUTOANTIBODIES

Clinical interest
- Diagnostic of Myasthenia Gravis
- Follow-up of the disease progression

Principle of the assay

Radioimmunoprecipitation
- Detergent solubilized acetylcholine receptors labelled with 125I-a bungaratoxin are incubated with test sera and the resulting complex is immunoprecipitated with anti-human IgG
- A balanced mixture of solubilized fetal and adult forms of the receptor represents the optimum preparation and is used to maximize the assay sensitivity

Characteristics
- Detection limit: 0.02 nmol/L
- Sample: serum, EDTA plasma
- Shelf life: 6 weeks

Expected values

<table>
<thead>
<tr>
<th>nmol/L</th>
<th>≤ 0.2</th>
<th>0.2 - 0.5</th>
<th>> 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHR-Ab</td>
<td>Negative</td>
<td>Grey zone</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Assay Procedure

1. Incubate 2h at RT
2. Centrifuge
3. Decant
4. Count

This is a comprehensive list.
However these products are not all available in every country.
Please contact Cisbio Bioassays for further details.